• 美文
  • 文章
  • 散文
  • 日记
  • 诗歌
  • 小说
  • 故事
  • 句子
  • 作文
  • 签名
  • 祝福语
  • 情书
  • 范文
  • 读后感
  • 文学百科
  • 当前位置: 柠檬阅读网 > 签名 > 正文

    [多普勒效应在天文上的应用] 多普勒效应在生活中的应用

    时间:2019-05-23 03:23:52 来源:柠檬阅读网 本文已影响 柠檬阅读网手机站

      1引言   当你站在公路旁,留意一辆快速行驶汽车的引擎声音时,你会发现在它向你行驶时声音的音调会变高些(即频率变高),在它离你而去时音调会变得低些(即频率变低).这种现象叫做多普勒效应.在光现象里同样存在多普勒效应,当光源向你快速运动时,光的频率也会增加,表现为光的颜色向蓝光方向偏移(因为在可见光里,蓝光的频率高),即光谱出现蓝移;而当光源快速离你而去时,光的频率会减小,表现为光的颜色会向红光方向偏移(因为在可见光里,红光的频率低),即光谱出现红移.
      2知识介绍
      在进一步研究多谱勒效应之前,先让我们了解一下有关波的基本知识:
      如果我们将一个小石块投入平静的水面,水面上会产生一阵阵涟漪,并不断地向前传播.这时波源处的水面每振动一次,水面上就会产生一个新的波列.设波源的
      振动周期为T,即波源每隔时间T振动一次,则水面上两个相邻波列之间的距离就为vT,其中v是波在水中的传播速度.在物理学中我们把这一相邻波列之间的距离称为波长,用符号氡 示.这样,波的波长、波速及振动周期三者的关系就可表示为:
       =vT(1)
      由于波源振动一次所需的时间为T,则波源在单位时间内振动的次数就为1T.物理学上,把波源在单位时间内振动的次数称为波的频率,用f表示.这样,它和周期的关系就可表示为f=1T,
      或T=1f(2)
      综合(1)式和(2)式可得
       =vT=vf(3)
      此式是我们讨论与波有关问题的基本公式,虽然是对水波的传播总结出来的,但它对一切波都适用.
      实验研究表明:对于确定的介质,波的传播速度v是一个定值.所以,当波在某一确定的介质中传播时,它的波长胗胨闹芷诔烧 (与频率成反比).即波的频率越高,周期越小,其波长越短;反之,波的频率越低,周期越大,其波长越长.
      对声波而言,声音的频率决定着声音的音调.即声波的频率越高,声波的音调也越高,声音也越尖、越细,甚至越刺耳.根据上述的结论,产生高音的声源振动较快,振动周期短,对应声波的波长也较短.例如:10000Hz的声波的波长是100Hz声波波长的1/100.
      而在可见光中,光波的频率决定着色光的颜色.频率由低到高依次对应红、橙、黄、绿、蓝、靛、紫.其中红光频率最低,波长最长;紫光的频率最高,波长最短.
      3理论分析
      下面我们就结合以上的背景知识一起来探究一下有关光的多谱勒效应:
      假设有个光源每隔时间T发出一个波列,即光源的周期为T.如图2,当它静止时相邻两个波列时间间隔为T,距离间隔为 =cT,式中c表示光速.
      当光源以速度v离开观察者时,在每两个相邻的波列之间的时间里光源移动的距离为vT,于是下一个波峰到达观察者所需的时间便增加了vTc,所以,相邻的两个波峰到达观察者那里所需的时间就为
      T′=T+vTc>T,
      即这时相对于观察者而言,光波的周期变长了,频率变低了.根据上面关于频率于光色之间的关系可知,次光的颜色会向红光偏移.
      这时到达观察者那里的两个相邻的波列的距离,即波长就变为
      (2)应用多谱勒效应可以对“日震”及太阳黑子等活动进行研究,我们知道地球有地震,分析地震资料可以得到地球内部结构的信息.那么,太阳上是否有“日震”?1960年,莱顿(R·Leighton)作了光球的高精度多谱勒位移观测,发现太阳表面不断的上下起伏运动,其震荡周期约300秒,振幅约1公里/秒,故称为“5分钟震荡”.20世纪70年代中期,希尔(H·Hill)又发现周期20分钟到1小时的较慢震荡,塞沃尼(A·B·Severny)等发现周期160分钟震荡(或称为“太阳脉动”).后来又应用多谱勒效应观测到了许多震荡模式,它们的周期约3分钟~12分钟.这一太阳物理学领域称为“太阳震荡学”,有人也称之为“日震”.对太阳震荡的进一步观测研究可能得到太阳内部信息.
      太阳与日球观测台(SOHO)的多谱勒摄像仪可以测定黑子周围及其下面的声速,因而得到气体的温度和运动,作出黑子内部及其下面的物理环境三维图.黑子是强磁场区,约束太阳的离子气体,阻断下面的对流向上加热表面,因此,黑子内的气体有机会冷却而黑暗.
      (3)应用多谱勒效应可以对比较适当的双星系统进行观测、分析.许多双星的两子星角距很小,甚至用望远镜也分辨不出来,但可以从它们光谱线的周期性多谱勒位移确定双星的轨道要素.当双星轨道面法线与视向交角较大时,相互绕转的子星就有视向速度周期性变化.当两子星都较亮时,在它们绕到A1和B1位置,运动速度都垂直于视向,谱线都没有位移而
      重叠;转到位置A2和B2,A2有间接的视向速度而谱线紫移,B2有远离的视向速度而谱线红移,可以观测到每颗星的谱线交替紫移和红移(双谱),得到两条视向速度(随时间变化)曲线;若一颗子星很暗,那么就只能观测到单星谱线的周期性位移(单谱),得到一条视向速度曲线.
      (4)通过对新星亮度和光谱的变化(即光谱位移)的特征分析表明,其外层发生爆发过程,有气壳向外抛出,并通过公式计算抛射速度达1000公里/秒或更高.亮度极大时,气壳脱离星体不久,体积较小,密度较大.由于气壳在膨胀,气壳中介于星和观测者之间的部分所产生的吸收线向蓝端位移,通过对吸收线蓝移的观测就证实了气壳在膨胀.
      (5)蟹状星云是1054年超新星的遗迹,离太阳2000Pc,光学区域的角大小为7″×4.8″,相应线大小为4Pc×3Pc,质量约2M⊙~3M⊙.通过对此星云光谱发射线的多谱勒位移分析得出“纤维”最大速度达1500km/s,估计超新星亮度极大时绝对星等约-18m,爆发前的质量约9M⊙.
      (6)我们观测的多谱勒位移对应谱线常不仅仅一条、两条,有时是多条,即同一条谱线出现多条子线.例如在许多恒星的高色散光谱中,实际吸收线是多重的,也就是同一条谱线出现几条子线,最多达7条.这表明星际原子不是均匀分布的,常集聚成“星际云”.星际云相对于地球具有不同的视向速度,当星光穿过它们时,形成了位移不等的子线.子线的数目反映了星光穿过的星际云的数目.
      (7)天文学家在天文观测时发现,几乎所有的遥远星系的光谱中都存在红移现象,如果用多普勒效应去解释这一想象,其结果只能是这些星系都在远离我们而去(即宇宙在膨胀).
      我们就用这一思想先来探索一下宇宙的膨胀问题:
      光在两个星系之间旅行时,星系之间的距离就等于光的旅行时间乘以光速(s=ct);而在光旅行时间内星系距离的增加等于光的旅行时间乘以星系的相对速度(膕=vt).当我们
      将距离的增加数值除以在增加期间内的距离的平均值,以计算出距离的相对增长时,我们发现光的旅行时间消掉了(膕s=vc).在光的旅行时间里,这两个星系之间距离的相对增长,刚好是星系的相对速度与光速的比值.但正如我们先前说过的,这个比值也是光在旅行期间波长的相对增加,即红移量.这样当我们从星系光谱中获得它的红移量后,我们就可以确定在光旅行时间内两个星系之间距离的相对增长了.例如:当我们观察星系3C295并发现它的光谱中谱线的波长比我们的标准光谱波长表中的波长要长46%,那么我们有理由相信宇宙的尺度已经比光离开它时大了46%.
      1929年哈勃从18个星系里最亮的恒星的视光度估计了这些星系的距离,从它们光谱的多普勒频移量测出了它们的速度,再将它们的距离和速度进行比较,发现任何星系间的相对速度都正比于它们之间的距离.简单地说就是,离我们越远,星系远离我们的速度也越大.这一重要发现被称为哈勃定律.它是20世纪天文学的最伟大的发现,它也是宇宙大爆炸理论的重要理论依据.
      哈勃定律写成公式就是S=Hv.公式中S代表星系间的距离,v代表星系间的相对速度.H是一个比例系数,称为哈勃常数.目前认为哈勃常数大约为每百万光年每秒15公里.根据这一常数我们还可以大致地估测出宇宙的年龄.既然所有星系都在飞驰着分离,那么它们必然曾经距离得很近.具体地说,如果它们的速度是恒定的话,使任何一对星系分离到现在的距离所需要的时间就是它们现在的距离除以它们的相对速度.但由于速度正比于它们现在的距离,因此任何一对星系分离所需的时间是一样的,就是说它们必定在过去的某一时刻是在一起的.用每百万光年每秒15公里作为哈勃常数,星系开始分离的时间.我们把用这种方法计算出来的“年龄”称为“特征膨胀时间”,它就是哈勃常数的倒数.而宇宙的真实年龄实际上应小于特征膨胀时间.因为我们知道,星系并不是以恒定速度运动的,它们的速度在相互的引力影响之下会逐渐减慢,因此,如果哈勃常数是每百万光年每秒15公里,那么宇宙的年龄必然小于200亿年.现在一般认为宇宙的年龄在150亿年左右.
      5结论
      通过对多谱勒效应的理解,可以定性的分析所研究各天体的运行速度.而通过给出的经典和相对论公式,可以定量的计算所研究各天体的运动速度,从而对天体现象进行深入研究.

    相关热词搜索: 多普勒效应 天文

    • 文学百科
    • 故事大全
    • 优美句子
    • 范文
    • 美文
    • 散文
    • 小说文章