• 美文
  • 文章
  • 散文
  • 日记
  • 诗歌
  • 小说
  • 故事
  • 句子
  • 作文
  • 签名
  • 祝福语
  • 情书
  • 范文
  • 读后感
  • 文学百科
  • 当前位置: 柠檬阅读网 > 散文 > 正文

    逢君正当时 SSD购买正当时

    时间:2019-04-30 03:27:18 来源:柠檬阅读网 本文已影响 柠檬阅读网手机站

      2011年的两场自然灾害重创了PC产业界,受害最深的则是硬盘产业。几乎一夜之间,硬盘售价全线上涨,原本只要三四百元的1TB硬盘至少需要七八百了,而且是有钱也不一定买得到。如此高额的涨价打消了许多消费者的购买欲望,HDD的失意让更多的消费者开始注意SSD——固态硬盘。
      SSD售价一路走低
      SSD固态硬盘不是新生事物了,许多玩家早就入手了SSD做系统盘了,对SSD带来的性能提升也有切身体会。SSD确实比HDD还贵,去年底今年初的主流价还是60/64GB约为700-900元,120/128GB大约是1200-1600元,依然要大大高于HDD硬盘,容量上更没有优势了。
      不过,HDD疯狂涨价之时,SSD降价之风愈演愈烈。随着制程升级和技术进步,SSD的价格其实一直在稳步下降,这一段时间降价尤其猛烈,淘宝上128GB M4已经杀进800元以内,三星和威刚的128GB也在800元左右,而在年初美光M4 128GB差不多要1300元,三星P830更要1400元左右,价格降了至少40%。这里还没有对比60/64GB的,因为目前它们的售价只有四五百元,最低的甚至只要三百多,相比年初的价格几乎腰斩,绝对是“跳楼价”,此时入手SSD是最合适不过的。
      目标120/128GB
      另外,本次SSD降价也直接提升了大容量SSD的可用性,之前SSD售价比较高的时候,许多消费者只能将就使用60GB甚至30GB的SSD,安装完系统之后就没多少剩余容量了,装软件或者游戏的可能比较低。
      如今120/128GB型号SSD价格大降,划分40GB做系统盘之外还有70G左右的可用容量,安装一些必备的大型软件之后,还可以装几个常用的游戏,载入和地图切换时间大大降低,整体的实用性比60/64GB型号要高多了。虽然64GB型号更便宜,但是考虑到对用户的实用性,128GB才是最有价值的,价格不高,容量够用。
      谈谈SSD空间
      常见的SSD的容量一般有30/32GB、60/64GB、120/128GB、240/256GB、480/512GB,实际上它们的总容量都是相同的,这里的容量缩水跟操作系统格式化后的容量减少还不一样,后者是计算方法不同,而SSD的容量的差别还有OP预留空间配置的不同。
      SSD容量当中的OP预留空间(Over-provisioning)是指SSD保留一部分闪存空间留作他用,这部分空间用户不可操作,容量大小一般是由主控决定的。OP比率=(SSD物理空间-用户可用空间)/用户可用空间。这其中还要涉及到OS与闪存的进制换算问题,厂商是以1K=1000的10进制计算的,但是OS和闪存中1K=1024是2进制。
      有关SSD容量差异的第二个影响也是常规的操作系统和厂商标注的不同了,厂商的120/128GB都是按照1000的比列来算的,而操作系统中又要以1024字节为单位做转换,也就人是说从晶圆厂的1024转到SSD厂商的1000,然后再从这个1000的比列转回到操作系统的1024,容量还会再减少一次。
      128GB SSD是128000000000字节,操作系统的文件系统容量是2进制的,1KB=1024字节,这个关系同上一节所讲的一样,如此算下来就是119.24GB,而120GB型号因为多了了8GB左右的二级OP空间,格式化后是111.79GB,这也是为什么很多人说我买的128GB容量怎么格式化后只有120GB不到的原因。
      市场热销SSD盘点走低
      最近SSD以及跌破了不少消费者的心理价位,在网上的销量也在飞速增长,带头降价的三星830系列和镁光M4的销量极高,大半的玩家是选择购买64GB的盘去做系统盘的,而购买128GB的玩家也不少。
      128GB除了性能上比64GB好之外,最重要的还是容量上的提升可以让用户的可用空间更为充裕,64GB的SSD装完系统再装些软件就没多少空间了,而128GB的还有大量空余空间可以装游戏或者其他东西,而且价格上也不过800元,个人更为偏向买128GB的产品。
      除了三星830和美光M4外,还有不少其他品牌的产品挺受大众欢迎,比如Intel 520系列,OCZ的Agility 3、Vertex 3和最新推出的Vertex 4,威刚的510与XPM SX900系列还有浦科特M3P、M3系列等等,它们的销量虽然比不上三星和美光的产品,不过买这些产品的玩家也不在少数。
      以上均为MLC闪存的产品,而性能更好的SLC颗粒SSD在民用级别市场难觅踪影,好在SuperSSpeed最近会在SLC SSD有所动作,对追求性能的玩家来说多了一种选择。
      SSD真正的优势
      要想真正了解SSD的优势和不足就先来看看HDD有哪些特点吧。大家都知道HDD硬盘是一种机械结构,影响性能的主要是马达转速、盘片密度、磁头数量、缓存容量等,其他因素还有,不过不是重点了。
      提高HDD硬盘性能主要是靠提高转速,目前主流的是7200RPM,民用级别高的有10000-15000RPM,但是高转速意味着噪音、功耗的增加,对马达的设计非常苛刻,不是想提就能提的。
      盘片密度也是提高性能的一个方法,从祖宗级的IBM Winchester(温氏)硬盘开始一直用的都是磁阻效应,最新的则是从GMR到垂直记录的PMR变化而已。
      HDD的机械架构决定了它不可能有质变,事实上除了磁盘密度近年来还有技术进步的空间之外,HDD硬盘的转速停留在7200RPM级别有七八年的时间了,目前最强的HDD硬盘连续读取速度也没有超过200MB/s级别,4KB随机性能更是绝对的悲剧。
      SSD的物理组成基本上就是闪存+主控+缓存+PCB+接口,没有机械部件,数据读写都是电子讯号,不存在马达转速这样的瓶颈因素,性能自然就上来了。
      说到性能,有一点要承认,最新的HDD硬盘的读写速度并不算差,比如日立之前发布的4TB硬盘,写入速度也有160MB/s,突发速度甚至能上477MB/s,写入速度几乎可与一些低端SSD相媲美。   但是在小文件随机性能上,HDD就完全无能为力了,举例来说,SSD的随机读取延迟只有零点几毫秒,而7200RPM的随机读取延迟有7毫秒左右,5400RPM硬盘更是高达9毫秒之多,反应在性能上就是随机读取能力远远不如SSD,这一点在开关机速度上最有体现。
      随机读写以及开机速度是HDD永远追不上SSD的地方,性能上只举一个随机性能的例子就可以秒杀HDD硬盘了,此外SSD在其他方面也要比HDD有优势,但是在容量与价格上SSD是完全处于劣势的。
      以往SSD确实比较贵,受众群体小,不如HDD那么实惠,但是随着技术的进步,SSD的每GB成本也在快速下降,特别是最近一段时间以来,SSD的价格战非常凶,以往128GB的SSD售价通常在1200元左右,但是三星、美光的128GB产品现在只有800多元了,甚至有750多元的产品,已经接近用户的心理防线了。
      SSD与HDD优劣的争论没有平息过,平心而论二者也不是简单的取代、被取代的关系,在当前大降价的情况下,阻碍SSD普及的最后一道防线也开始崩溃,而升级SSD带来的体验效果要比升级CPU、内存还要明显,有了这样的优势,我们还有什么理由拒绝SSD?
      主控SSD的大脑
      实际上主控在SSD中只是一颗芯片,但是正是这么一颗小小的芯片决定了SSD多方面的性能,称之为SSD的“大脑”并不为过。SSD主控用于连接闪存芯片与内存,接收系统发出的指令以读取或者写入数据,主要负责ECC纠错、耗损平衡、坏块映射、读写缓存、垃圾回收以及加密等。
      另外,SSD主控还要针对不同的闪存颗粒进行针对性优化,因为厂商通常会根据需要选择闪存颗粒,比如浦科特M3P和美光M4使用的都是Marvell主控,但是一个是用了IMFT同步闪存,另一个则是东芝Toggle DDR闪存。与之类似的还有OCZ Vertex 3系列,虽然用的都是SF-2281主控,但是Max IOPS版使用的却是东芝闪存,常规版用的则是IMFT 25nm同步闪存,这都需要SSD主控极好的适应能力。
      虽然主要性能跟主控有关,但是主控发挥的水平还要跟firmware固件联系起来,后者相当于SSD的“操作系统”,而固件更新带来的性能变化甚至比SSD主控本身还要明显。
      SSD厂商一般都会自己开发固件,当然也有从主控厂商那里购买一揽子方案的。另外SSD主控和闪存一样属于高技术含量,能玩得转的其实没几家,下面简单介绍一下市场上常见的几种SSD主控方案。
      Marvell主控
      这两年中Marvell公司的SSD主控发展的很快,性能、可靠性经历了玩家和市场的检验,市面上口碑较好的SSD如美光M4、浦科特M3/M2都使用了Marvell方案。
      Marvell目前的主控芯片是88SS9174,早期有BJP2步进,第一款支持SATA 6Gbps接口的主控,读写速度只有355、215MB/s,现在看来表现一般,但在当时绝对是性能最强的SSD主控之一,使用这款主控的SSD比如美光C300都成为一代经典。
      主力型号是BKK2步进88SS9174优化了25nm NAND闪存的8KB页面支持,支持TRIM、NCQ以及GC垃圾回收等功能。
      使用此主控的产品主要有:Crucial RealSSD M4系列,浦科特M2P、M2S、M3系列,ORICO HM1系列,海盗船Performance Pro系列,Intel 510系列,产品口碑不错。
      今年三月份 Marvell发布了第三代SSD主控88SS9187芯片,支持8通道并行,最高读写速度可达1.6GB/s,特别是脏盘情况下连续写入速度也能保持在500MB/s,此外在功耗、可靠性等方面进行了优化,是新一代SSD的首选。
      SandForce主控
      SF主控是目前市面上使用最多的SSD主控了,因为它提供了包括主控、固件以及PCB设计在内的一揽子方案,说简单点厂商只要自己组装起来加个外壳就能生产SSD了,技术门槛很低,自然就受欢迎。
      SF目前的主力是SF-2000系列主控,有针对企业级的SF-2500/2600系列,消费级市场现在主要是SF-2281了,主要的SSD厂商如OCZ、海盗船、金士顿、威刚、博帝及影驰都在使用SF主控,甚至Intel今年的SSD产品如520、330系列也转投SF阵营了,从数量上看SF主控无疑是使用最多的。
      有一点要注意,测试中超极速SSD使用的SLC闪存,而且容量最大也只有128GB,这就跟SF-2281主控的限制有关了,不是厂商不想做大容量SLC SSD,只是这款主控目前最大也只能支持到128GB SLC闪存,MLC没有容量限制。
      SF主控也支持TRIM、NCQ等功能,最知名的技术就是DuraWrite数据压缩了,通过把需要写入的数据压缩处理之后再写入SSD闪存中,SF主控变相提高了写入速度,而且写入放大也减少了,SF宣称其写入放大率小于0.5,最低的甚至只有0.14,极大地延长了SSD使用寿命。
      有关垃圾回收处理上,SandForce主控并不会去做主动的垃圾回收,而是平时通过主控的固件程序算法,SSD会自动为每一个经过擦除处理的“空白”块作一个标记。
      当SSD整盘的垃圾达到一定数量,需要进行GC垃圾回收的时候。主控芯片会自动寻找到标记等级较低的块进行垃圾回收。这样做可以减少NAND的损耗而且还能降低主控的占用率,让主控腾出大量空余时间来进行压缩数据。不过这样的算法会导致SSD在使用一定时间后性能下降,特别是在连续写入速度上下降10%~20%左右。
      SF主控因为入门要求低,开放度高,包括Intel在内的有晶圆厂的厂商已经开始使用SF主控的产品了,从使用数量和支持力度上来看,它仍然是最不可忽视的主控。
      其他主控
      PC29AS21BA0是Intel早期自产自销的主控,当前的性能还是非常强大的,最大读写速度分别为270/220 MB/s,最大读写IOPS分别为39500/23000,主要用在Intel 320/311/310/X25-M系列SSD上。但是Intel显然不愿意在SSD主控上继续下功夫了,今年新出的520、330系列SSD主控使用的都是SF-2281,虽然说是自己开发固件的。无论如何Intel主控也要退出市场了。   SSD主控实际上也是ARM处理器,三星也有能力开发性能强大的SSD主控。早期的主控S3C29RBB01也曾在海盗船P系列、OCZ Summit系列、金士顿 V+系列的部分型号上用过,此外还有一些OEM商也用过三星主控。
      目前主要是新一代S4LJ204X01主控,多用在三星自家的P830系列SSD上,支持TRIM、NCQ、GC等主要功能,读写速度在520、400MB/s左右,整体表现还不错。
      东芝和三星都是Toggle DDR阵营,也有自己的主控产品,比如T6UG1XBG,主要用于金士顿V+系列中编号SNVP325的SSD中,曾经最便宜的SSD——金士顿V系列30GB使用的也是这款主控,读写速度只有180、50MB/s,甚至比HDD还低,当然4K随机性能还是比HDD要好得多。
      东芝的SSD主控特点就是便宜,但是性能低,不过这不代表东芝做不出高性能SSD主控,之前IO-DATA在日本推出的一款SSD使用的就是新一代东芝主控TC58NC5HJ8GSB-01,读写速度可达440、376MB/s,随机性能也有32MB/s,而且也支持数据压缩,绝对有让人刮目相看的实力。
      JMirco早期的SSD主控有JMF612系列,在威刚S592、海盗船Reactor系列、金士顿V系列部分型号(金士顿V系列真的是万金油,各种低端主控都有用过)以及博帝Zephyr系列有过使用。
      JMF612支持TRIM,读写速度230、150MB/s,随机性能也很一般,后来这款主控还被东芝remark为东芝618使用,不过随机性能更低。
      目前JMircon的SSD主控为JMF66X,支持SATA 6Gbps、NCQ以及TRIM,读写速度为500、400MB/s,金士顿V200系列中有过使用,从官方公布的数据来看随机性能依然很一般,这也是JMicron主控的通病了。
      从现有局面看,SSD主控市场的“玩家”趋于集中,除了SF和Marvell两大豪门之外,其他厂商要么性能表现一般,要么就自产自销,就连Intel也开始使用第三方主控了,看来强者恒强也是SSD主控不可避免的趋势。
      NAND的分类
      即便同为NAND闪存也有三六九等之分,从下到上性能、可靠性依次升高,但是价格也水涨船高。金字塔顶端的是SLC,可靠性、寿命、性能还有价格都是最高的,使用SLC闪存的要么针对不计成本的企业级市场,要么就是做几款产品展示形象的。
      第二级的是Clear NAND,它的特殊之处在于内建ECC纠错支持,这样SSD主控就不需要ECC处理了,负担就少多了,Clear NAND主要是美光在做。
      再往下就是MLC的天下了,但是MLC也有很大区别。最好的是Enterprise Synch MLC(企业级同步MLC),可靠性和寿命针对企业级市场做了优化。之后就是Synch/Toggle MLC(同步/反复MLC),其中Toggle MLC多为东芝出品,当然Toggle阵营中也有企业级闪存,与企业级同步MLC对应。SSD中应用比较多的其实还有Asynch MLC(异步MLC),价格便宜量又足,性能也不算差,重点就是消费级市场。
      金字塔最底端的是TLC,它也很特殊,从前两年就开始嚷嚷相应的TLC SSD,去年11月份OCZ就宣布将在今年推出TLC产品,不过到现在也没什么动静,关键的问题就在TLC可靠性太差,性能也低,除了容量提升之外很难有说服人的理由。
      施加电压会导致浮栅极电位变化,那么施加不同的电压就会有更多的电位变化,NAND闪存单元就可以容纳不同的信号组合,这也就是SLC、MLC以及TLC的区别。
      提升容量、降低成本是MLC及TLC最大的优点,但是负面影响也很严重。MLC需要更精确的电压控制,program过程所需时间更多,因此写入性能也会大幅下降,理论上只有SLC的1/4;读取,特别是随机读取性能也会受影响,因为需要花更多的时间从四种电信号状态中区分所需数据,读取性能只有SLC的1/3。
      写入次数限制
      目前SSD所用的闪存主要是NAND类型,其他闪盘、手机内存等领域中也是NAND为主。NAND本质上都是Floating Gate MOSFET(浮栅极-金属氧化物半导体场效应管),也是利用通电与否代表计算机可识别的1、0状态。
      加电瞬间会产生强大的电场(大于1000万 vt/cm),这么强的电场会破坏隧道氧化层的原子结合,脱离的电子就会上升到浮栅极上以形成电位变化,断电之后电子还会恢复正常位置,这样反复的断电-加压就形成了不同的电位信号。
      加电的过程等同于HDD硬盘的数据写入操作,它被成为“Program(编程)”,断电的过程电位恢复,这相当于HDD硬盘的擦除数据,这里成为“Erase(擦除)”,完整的一次P/E循环就是NAND的写入循环,从这里也可以看出SSD要想写入数据就需要恢复默认电位,也就是以“擦除”为前提,这个特性决定了SSD的数据写入方式,也会带来其他的一系列问题。
      最直接的影响就是SSD寿命,因为P/E循环次数是有限的,浮栅极不像HDD的GMR(巨磁阻尼)效应那样是永久的,存在次数限制。
      目前主流25nm工艺下,P/E循环次数在3000-5000次之间,测试的14款SSD中有9款SSD的标称写入次数都是3000次,只有Intel自家520、330、浦科特M3P以及OCZ Vertex 3 Max IOPS是5000次,最强的是超极速SSD,标称10万次写入寿命,因为它是SLC。
      NAND闪存的寿命
      NAND闪存的写入(P/E循环)次数有限,SLC的量级是1万-10万次,而MLC普遍只有3000-5000次,因此围绕SSD可靠性的争议和研究就没停止过。
      SLC闪存一次P/E循环只需要击穿一次氧化层,而MLC需要不同的电压多次击穿氧化层,物理损害比SLC要严重得多,MLC的写入次数指数级下降,比如SLC的理论寿命是1万-10万次,而MLC的写入寿命上限就只有1万次,而且随着工艺的进步,这个数值还在下降,25nm MLC普遍只有3000-5000次。   当然,也有一种说法称即便只有3000次写入寿命,60GB SSD的写入数据寿命也有3000×60GB=180TB,120GB也有360TB,其他更高容量的SSD写入量就更大了,日常使用中谁有这么多的写入操作,操作系统大都是读取操作而已,因此SSD寿命问题不足为虑。
      SSD耗损均衡
      SSD有限的写入循环次数决定了用的越频繁,如果不加以控制,用的频繁的区块坏的更快,不平衡的使用方式对SSD寿命也是一种伤害。耗损均衡(wear leveling)技术就是为了保证NAND所有区块的写入-擦除几率是均等的。耗损均衡与主机系统无关,因为主机根本不关心数据是写在那块NAND区块的,它只是向逻辑区块寻址空间(logical block addresses,简称LBA)写入数据,SSD主控再通过LBA向PBA(物理寻址空间,physical block addresses)真正写入数据,而WL就发生在后一段过程中。
      准确来说,耗损均衡是一种优化算法,它可以将LBA重新映射到不同的PBA空间中以平衡PBA的写入次数,重新映射的频率、快速定位“最小磨损”(least worn)区块的能力以及迁移数据的能力是评估WL性能的主要指标,它主要依赖于SSD主控。
      我们来算一下120GB SSD的使用寿命问题。以3000次P/E循环为例,写入放大率为2,耗损均衡率也算作2,平均每天写入50GB数据量,那么实际的使用寿命为120GB×3000/(50GB×2×2×365)=4.9年,差不多是5年左右(60GB则是两年半左右),数值高低还要看厂商的写入放大和耗损均衡控制能力,更要看用户的使用情况,如果写入操作很少(实际上50GB的写入量不算少,日常操作中读取更多,写入比较少),那么使用寿命还会得到延长。
      耗损均衡技术的存在使得SSD不是那么容易用坏,而且它只是提高SSD可靠性和寿命的一个代表,闪存厂商和主控厂商都在SSD延寿、恢复性能上倾注了很多精力,比如下一节还要讲到的TRIM和GC。
      TRIM指令
      SSD的写入方式决定了它越用越慢的特性,数据写入的越多性能就会越差,当然这也不是世界末日,只要对SSD进行清空操作,性能还会恢复过来的,最彻底的方式就是删除分区、重新格式化一遍,但是这种激进的方式会导致数据丢失,不够人性化。
      为了恢复SSD的性能,厂商需要一种让SSD即便不能如获新生也可以重振雄风的技术,其一就是TRIM指令。TRIM指令是微软提出的,但是SSD厂商也有支持与不支持TRIM之分,所以还是跟SSD有一定关系。TRIM是基于SATA控制器的一个指令,一旦有文件删除或者分区格式化,操作系统就会发TRIM指令给SSD主控告诉它某处的数据已经删除了,SSD因而知道哪些数据是能动哪些是不能动的,之后就可以进行清空操作以恢复性能了。不过这个过程不是马上就完成的,TRIM命令是即时发送到SSD主控中的,但是什么时候开始清空数据是主控算法的事。
      HDD机械硬盘是可以直接在原有数据上直接覆盖,但是SSD不行,必须要清空原有数据才能写入新数据,而系统并非真正删除数据的特性会对SSD的性能造成影响,TRIM指令的存在使得SSD能够紧紧跟随OS的操作意图,擦除已删除的无用数据以恢复SSD性能。
      TRIM支持与否依赖于操作系统、磁盘控制器驱动以及SSD主控,Win7、Windows 2008 R2、Linux 2.6.33、MAC OS 10.6.6、Free BSD 8.2及之后的系统都支持TRIM或者类似指令,Win7自带以及Intel 9.6.0.1014及之后的磁盘驱动都可以支持。
      TRIM指令目前只支持单个SSD,RAID模式无效,但是之前有消息称Intel打算在RST 11.5、11.6驱动中提供RAID模式的TRIM指令支持,还有一些厂商用自己的方式解决了RAID模式下的TRIM指令问题。另外,XP系统下是不支持TRIM指令的,不过三星的工具软件也可以让其SSD实现类似TRIM的功能。
      GC垃圾回收
      垃圾回收(garbage collection,简称GC)是SSD恢复性能的另一大秘籍,这个主要跟厂商所用的主控有关,其意义就跟字面意思一样,通过清理无用的垃圾数据保持SSD性能如新。
      它的存在还是跟SSD的特性有关,空盘下SSD写入数据所需时间以ns计,但是擦除数据的过程则以ms计,写入的数据越多,需要擦除的时间也越长,SSD的写入性能就会严重下降,GC机制把原本杂乱无章存放的数据整理一遍,然后写入到新的空白区,之前的区块就会进行清除操作以恢复正常性能。
      由于各种写入、删除操作会在SSD留下杂乱的数据,其中有些是还有用的,有些就是无效的,GC功能启动之后就把有用的数据拷贝到另外的区块,原来存储数据的区域就会被清除,恢复空盘水平以准备写入新的数据。
      上面只是理论操作过程,具体怎么做还有个选择问题,如果在SSD读写数据的同时进行GC操作,这种实时GC(Real Time GC)对主控的性能是个考验,一方面要往空白区写入数据,同时还要照顾无效数据的“拆迁”工作,这么频繁折腾SSD的话估计SSD那有限的读写寿命也支撑不住,实时GC不可取。
      目前的GC大都是在SSD闲置时才开始工作,也就是所谓的“Idle Time GC(闲置GC)”了。厂商会在主控中设定一个条件,比如空白容量达到某种比例才开始GC处理,这样就预先释放了空白空间,如果达到设定条件的上限,那么GC也会停止,这样处理比实时GC更利于延长SSD寿命。
      闲置GC也不是完美无缺的,它会带来额外的写入放大,因为在GC处理开始之前,某些整理过的页面(page)可能正在变脏,不过闲置GC增加的写入放大率非常小,OCZ称其SSD的闲置GC只有额外的1%放大率,影响非常小,整体上依然是利大于弊。
      TRIM和GC机制可以说是相辅相成的,TRIM通知给SSD的可删除数据越多,GC操作需要转移的数据就越少,写入量也会减少,对SSD来说也是延长使用寿命的一种方式。   为SSD选择主板
      俗话说好马配好鞍,光只有SSD有速度是不行的,磁盘的传输速度还受到磁盘控制器的影响,而这个磁盘控制器主要是整合在南桥芯片里面的或第三方控制器,一块主板上也有着各种的SATA接口,那么面对种式繁多的SATA口我们应该怎么选择呢?
      Intel 6、7系列芯片组、SB950和SB850这三款芯片的磁盘性能都是非常不错的,在测试中各有各自的优势,而且都提供了SATA 6Gbps接口,作为SSD的最佳搭档再适合不过。
      Llano APU的搭档A75芯片的磁盘总体性能上比SB950、SB850这两款南桥性能上弱差一点,不过有些测试项目中还比它们强一点,对SSD性能的影响并不会很大。
      第三方的Marvell芯片桥接出来的SATA 6Gbps接口性能下降非常的大,没什么特殊需要的话最好不要使用它提供的接口,不过如果真的不够用的话就委屈一下吧,怎么说都比SATA 3Gbps接口快,另外如果是P55这类南桥只能提供PCI-E 1.1带宽的主板的话就不建议使用桥接出来的SATA 6Gbps接口了,性能比原生的SATA 3Gbps接口还差。
      Intel P55和ICH10R由于不支持SATA 6Gbps接口,因此最新使用SATA 6Gbps接口的SSD插在上面的话连续读写性能当然会大幅度下降的,随机读写性能的话ICH10R的性能还可以,P55的话相对较弱。
      开启AHCI模式
      目前的主板都会在BIOS中提供硬盘工作模式选项,它们通常会被分为AHCI、IDE和RAID模式。其中IDE模式通常都是默认设置,它是将SATA硬盘虚拟成传统的IDE通道来使用。而AHCI通过包含一个PCI BAR(基址寄存器),来实现原生SATA功能,可以实现包括NCQ、热拔插在内的诸多功能。
      那么用SSD的话到底要用哪个模式呢?在A75主板上,IDE和AHCI模式下的SSD性能相差甚远,在持续读取速度上IDE下的速度低了100MB/s以上,唯一的好处是4K读的速度比AHCI要好,但是由于AHCI模式下支持NCQ,因此4K-64Thrd的速度得到了几何级提升,而我们实际应用中通常是QD2-3(队列深度)的级别,因此4K(非单一的QD1)性能会好过IDE模式。
      如果在BIOS中更改为AHCI模式的话,再次进入系统会出现蓝屏,一般来说只能重装系统来解决,不过在Windows Vista和Windows 7中可以在注册表中作个小小修改就可以避免蓝屏的发生:打开注册表编辑器(regedit),HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Msahci,双击“名称”列中的“Start”,在“数值数据”框中,键入“0”,然后确定并退出,重启电脑在BIOS中开启AHCI再次进入系统,并安装AHCI驱动,有时可能要事先卸载原来的IDE驱动再安装AHCI驱动才能确保进入系统之后不蓝屏。
      SSD的4K对齐问题
      在了解“4K对齐”之前我们先要知道什么是“4K扇区”,最初硬盘容量是被切分成每扇区512个字节来进行文件管理和存储的,而现在主流硬盘容量已经攀升到1TB甚至更高,再用老标准去管理现超大容量的硬盘不但显得繁琐,而且降低效率,因此将每个扇区512字节改成每个扇区4096个字节,就是所谓的“4K扇区”。
      在了解了“4K扇区”这个定义后,就很容易理解什么是叫做“4K对齐”了。所谓“4K对齐”就是符合“4K扇区”定义格式化过的硬盘,并且按照“4K扇区”的规则写入数据。
      而平常所说的4K没对齐,是因为在NTFS6.x 以前的规范中,数据的写入点正好会介于在两个4K 扇区的之间,也就是说即使是写入最小量的数据,也会使用到两个4K扇区,显然这样对写入速度和读取速度都会造成很大的影响。为此对于4K没对齐的情况来说,一定要修改成4K对齐才行,否则对于固态硬盘来说,不但会极大的降低数据写入和读取速度,还会造成固态硬盘不必要的写入次数。
      4K没对齐导致SSD的随机读写能力大幅度下降,导致4K没对齐最常见的原因是用第三方分区工具设置不当造成的。了解到4K对齐的重要性之后我们来谈谈怎么做到4K对齐,其实最简单的就是Windows 7重新分一次区,因此Windows 7分区是按4K分区来进行的,而XP的用户在分区是把分配单元大小设置为4096字节。如果不想重新弄系统的话可以使用Paragon Alignment Tool来进行无损4K对齐。
      进入软件后会首先让你选择防数据丢失的方式,由于这次是演示我们就选最快的无保护了,软件会自动扫描没对齐的盘,没对齐好的盘是黄色的,点击“Align partitions”开始对齐。需要稍微等一段时间,时间根据数据的多少而定。另外DiskGenius也能做到4K对齐,不过需要把硬盘重新分一次区,当Paragon Alignment Tool不起作用时就靠它了。
      后 记
      一般来说SSD的包装盒子背面都会贴有官方的测试数据,以用来标识这款SSD的性能如何,但是你如果对比一下几款产品的官方数据的话,你就会发现不同产品间官方给出的数据差异非常的大,那么我们应该怎么去看待这些数据呢?
      这些数据其实可以分为两个部分,一个就是连续读写速度,另一个就是IOPS,首先我们先来说说这个连续读写速度,通常SandForce主控的SSD都会标出它的读写速度都有500多MB/s,但是实际上是不是这样呢?由于压缩算法的存储SandForce的产品的确可以跑出这样的速度,但是是在非常特殊的情况下才能做到的,就是这些数据的全“0”或者全“1”这样压缩率非常高才行的,用ATTO测试就能跑出这样的速度,厂商通常也是用这个软件测试然后再给出官方数据的。
      但是如果用AS SSD来测试的话就会看到另一番景象,特别是写入速度会缩水得非常厉害,有些厂商会在官网上公布AS SSD测出来的成绩,但是大多数厂商是没提过的,因此SandForce主控的产品的官方连续读写速度其实有很大水分的,建议大家看看即可,实际购买前还是要去网上多看看产品的评测。
      而其他主控产品由于没有压缩算法,因此官方给出的连续读写速度是实打实的,SSD的实际读写速度就在官方数据附近。
      另外官方还会给出产品的IOPS,IOPS是直接与SSD的随机读写性能挂钩的,那么是不是代表着IOPS越高越好呢?理论上是这样,但是我们日常操作是很难达到这么高IOPS的,因为许多官方IOPS数据是使用IOMeter 4K QD32随机读写测出来的,但是日常的操作最多也就QD3~4,官方给出的是QD32下的IOPS并不代表着我们平常使用时实际IOPS,所以对一般用户来说官方给出的IOPS数据是基本没用的。

    相关热词搜索: 正当时 购买 SSD

    • 文学百科
    • 故事大全
    • 优美句子
    • 范文
    • 美文
    • 散文
    • 小说文章