• 美文
  • 文章
  • 散文
  • 日记
  • 诗歌
  • 小说
  • 故事
  • 句子
  • 作文
  • 签名
  • 祝福语
  • 情书
  • 范文
  • 读后感
  • 文学百科
  • 当前位置: 柠檬阅读网 > 美文 > 正文

    人体粘弹性特性 [具有半封闭隧道的饱和粘弹性土动力特性]

    时间:2019-05-15 03:23:56 来源:柠檬阅读网 本文已影响 柠檬阅读网手机站

      摘 要:考虑介质和流体的压缩性,根据Biot理论和弹性壳体理论,在频率域内研究了饱和分数导数粘弹性土体-半封闭圆形隧道壳体衬砌系统耦合振动。将土体视为液固饱和多孔介质,选择反映介质流变特性的分数导数模型描述土骨架的应力-位移本构关系,又引入部分透水的边界条件,得到了饱和粘弹性土体中半封闭隧洞内边界分别在轴对称荷载和流体压力作用下位移、应力和孔压的表达式。进行了参数分析,研究表明:轴对称荷载条件下,分数导数阶数对系统响应的影响远大于流体压力情形下的动力响应,且存在明显的共振效应,但流体压力条件下不产生共振现象。
      关键词:饱和多孔介质;分数导数模型;半封闭隧道;壳体衬砌;耦合振动
      中图分类号:TU435 文献标志码:A 文章编号:1674-4764(2012)02-0021-06
      
      Coupled Vibration of Saturated Fractional Derivative Type Viscoelastic Soil of a Circular Tunnel with Partially Sealed Shell Lining
      GAO Hua-xi1, WEN Min-jie2
      (1. School of Naval Architecture and Civil Engineering, Zhejiang Ocean University, Zhoushan 316004, Zhejiang, P. R. China;
      2. Department of Civil Engineering, Shanghai University, Shanghai 200072, P. R. China)
      Abstract:Considering the compression of medium and fluid, coupled vibration of saturated fractional derivative type viscoelastic soil and a circular tunnel with partially sealed shell lining in the frequency domain is investigated according to theories of Biot and elastic shell. The stress and displacement constitutive behavior of the soil skeleton is described by fractional derivative model which reflects the rheological properties of the medium while regarding soil as a liquid-solid saturated porous medium. The expressions of displacement, stress and pore water pressure are obtained while the inner boundary of circular tunnel is subjected to axially symmetric radial traction and axially symmetric fluid pressure respectively by introducing a partially permeable boundary condition. With the parameter analysis, it is revealed that the order of fractional derivative model on the responses for the system subjected to the symmetric radial traction is much greater than that of the system under the axially symmetric fluid pressure. And resonance phenomenon occurs obviously. Nevertheless the system responses do not have remarkable resonance phenomenon under axially symmetric fluid pressure.
      Key words:saturated porous medium; fractional derivative model; partially sealed tunnel; shell lining; coupled vibration
      
      众所周知,土体具有粘弹性性质,在长期条件下发生蠕变和应力松弛现象。许多研究者经常利用经典的Maxwell流体模型、Kelvin固体模型及标准固体粘弹性模型等来反映土体的流变特征[1-2]。然而,经典粘弹性模型难以精确描述土体流变全过程,即在蠕变和应力松弛初期不能完全与试验数据吻合[3-4]。另外,将土体视为弹性两相介质,Lu和Jeng[5]得到简谐移动荷载下三维圆形隧洞的动力特性,分析了应力、位移和孔压幅值随轴向的变化规律。此后,黄晓吉等[6]人研究了饱和土弹性衬砌系统耦合振动特性,着重讨论了衬砌模量对响应幅值影响;高盟等[7]研究了冲击荷载作用下饱和土弹性衬砌相互作用的瞬态响应。Hasheminejad和Kazemirad[8]得到了地震激励下偏心衬砌透水隧洞的动力响应,讨论了变形衬砌厚度、波入射角等参数的影响。考虑土体粘性影响,Xie等[9]、Xu和Wu[10]、Liu等[11]等利用Kelvin-Voigt模型描述土骨架的应力-位移本构关系,研究深埋隧洞或球空腔的动力响应。为解决围岩压力理论计算衬砌承受荷载及成本高问题,Li和Chen[12]、Xie等[13]、刘干斌等[14]等研究饱和弹性或粘弹性土-圆形隧洞壳体衬砌系统的振动特性。考虑隧洞的弹塑性解,张黎明等[15]得到了衬砌透水隧洞的应力和位移场。基于实际工程影响,汤雷和傅翔[16]、吕玺琳和王浩然[17]分别研究了水工隧洞施工缺陷对衬砌承载性能影响和软土盾构隧道开挖面的稳定性。
      然而,自Bagley和Torvik[18]提出分数导数概念以来,其理论弥补了经典粘弹性模型的这一缺陷,可更好地拟合蠕变和松弛曲线[19-20]。但是,利用分数阶导数本构关系在岩土工程领域中的应用研究较少。因此,本文在现有研究的基础上,基于Biot理论,利用分数导数模型来描述土骨架的应力位移本构关系,引入更符合实际工程的部分透水边界条件,得到了在轴对称荷载和流体压力作用下饱和分数导数粘弹性土体中半封闭隧洞的位移、应力和孔压表达式。分析了分数导数阶数、材料参数和相对渗透系数对系统响应的影响。
      1 数学模型和控制方程求解
      如图1,建立饱和粘弹性中圆形衬砌隧洞的数学模型。隧洞的内外半径分别为c和b,衬砌的厚度为h=b-c;a为衬砌中曲面半径。土体的剪切模量和孔隙率分别为G和φ0,其泊松比为vs,衬砌的杨氏模量和泊松比分别为El和vl;衬砌内边界分别作用轴对称荷载q0eiωt和均布流体压力qfeiωt(i2=-1)。将该问题视为平面应变问题,根据Biot饱和土理论,不计体力时极坐标下饱和粘弹性土体动力方程为[21]
      图1 圆形隧洞模型
      σSTrr+σSTr-σSTθr=2t2ρuSr+ρfwFr(1)
      式中:uSr、wFr分别表示土骨架的径向位移和流体相对于土骨架的径向位移;σSTr、σSTθ代表土体的径向和环向总应力;土体的总密度为ρ=(1-φ0)ρs+φ0ρf,ρs,ρf分别为土骨架和流体的密度。
      显然,极坐标下分数导数模型描述的土骨架应力应变本构关系为[19]
      1+νγεDγσSEr=1+νγσDγλS0uSrr+uSrr+2GuSrr
      1+νγεDγσSEθ=1+νγσDγλS0uSrr+uSrr
      +2GuSrr(2)
      式中:λS0为拉梅常数;νγε和νγσ为材料参数,λS0=2νsG(1-2νs);且0    η=1.5,=20,β=0.95,=0.5
      1=1.5,=10,vs=0.35,δ=100
      =1.25,vl=0.25,=0.05,Vε=10
      Vσ/Vε=3,γ=0.5,κ=0.1(21)
      如图2表示在η=1.5处经典粘弹性饱和土(γ=1)情形下有无h/2衬砌厚度对无量纲径向位移幅值的影响。可见,考虑h/2衬砌厚度下,隧洞边界轴对称荷载时位移幅值的峰值略大于忽略h/2衬砌厚度情形下位移幅值的峰值,但是差异并不明显,且随着频率λ的增加,2种情形下的结果几乎相同。而在流体压力作用下2种情形的位移幅值完全一样,与刘干斌等[14]的结论一致。图3为η=1.5处分数导数阶数γ对位移幅值U的影响。轴对称荷载作用下,当频率λ1.5时径向位移幅值随着阶数γ的增加反而增大。图4表示相对渗透系数κ改变时,径向位移幅值U随无量纲半径η的影响。轴对称荷载下,随着相对渗透系数的增加,位移幅值U逐渐减小,并指出senjuntichai[22]中边界透水κ→∞和不透水κ=0两种极限状态只是本文的特例。而材料参数比Vσ/Vε对径向位移幅值U的影响与分数导数阶数γ对位移幅值的影响有类似之处(图5)。可见,隧洞边界轴对称荷载情形下位移幅值U远大于流体压力情形下的位移幅值U。图6和图7分别表示阶数γ和材料参数比Vσ/Vε对孔压幅值P的影响。轴对称荷载情形下,当频率λ=0时孔压幅值P为零,并且随着阶数γ的增加而减小,经典粘弹性饱和土(γ=1)时,孔压幅值达到最小值。流体压力作用下,当频率λ=0时孔压幅值最大,而阶数γ对孔压幅值P的影响很小(图6)。而材料参数比Vσ/Vε对孔压幅值P的影响与阶数γ对孔压幅值P有相似之处。
      4 结 论
      利用分数导数模型描述土骨架的应力位移本构关系,在频率域内得到了饱和分数导数粘弹性土体中半封闭隧洞内边界分别在轴对称荷载和流体压力作用下位移、应力和孔压的表达式。考察了分数导数阶数、材料参数和相对渗透参数对饱和粘弹性土体弹性壳体衬砌系统响应的影响。得到以下结论:
      1)轴对称荷载情形下,分数导数阶数γ对饱和粘弹性土半封闭圆形隧洞壳体衬砌系统动力响应的影响远大于流体压力条件下系统动力响应的影响。
      2)通过图形对比分析,有效地证明了将衬砌的中曲面等效为衬砌和土体的接触面,得到忽略h/2厚度的计算结果是正确的,验证了将衬砌视为薄壁壳体是可行的。
      3)轴对称荷载情形下土体和衬砌渗透系数对系统动力响应的影响与流体压力情形下对系统响应的影响有明显差异。当渗透系数κ=100时,边界接近透水状态。 4)轴对称荷载下,系统响应存在明显的共振效应。而流体压力条件下不产生共振现象。
      参考文献:
      [1]YOUNESIAN D, KARGARNOVIN M H, THOMPSON D J, et al. Parametrically excited vibration of a Timoshenko beam on random viscoelastic foundation jected to a harmonic moving load[J]. Nonlinear Dynamics, 2006, 45(1/2): 75-93.
      [2]SENALP A D, ARIKOGLU A, OZKOL I, et al. Dynamic response of a finite length euler-bernouli beam on linear and nonlinear viscoelastic foundations to a concentrated moving force[J]. Journal of Mechancial Science and Technology, 2010, 24(10): 1957-1961.
      [3]孙海忠, 张卫. 一种分析软土黏弹性的分数导数开尔文模型[J]. 岩土力学, 2007, 28(9): 1983-1986.
       SUN HAI-ZHONG, ZHANG WEI. Analysis of soft soil with viscoelastic fractional derivative Kelvin model[J]. Rock and Soil Mechanics, 2007, 28(9):1983-1986.
      [4]刘林超, 杨骁. 竖向集中力作用下分数导数型半无限体粘弹性地基变形分析[J]. 工程力学, 2009, 26(1): 13-17.
       LIU LIN-CHAO, YANG GAO. Analysis settlement of semi-infinite viscoelastic ground based on fractional derivative model[J]. Engineering Mechanics, 2009, 26(1): 13-17.
      [5]LU J F, JENG D S. Dynamic analysis of an infinite cylindrical hole in a saturated poroelastic medium[J]. Arch Appl Mech, 2006, 76:263-276.
      [6]黄晓吉, 扶明福, 徐斌, 等. 衬砌弹性模量对圆形隧洞动力响应的影响研究[J]. 现代隧道技术, 2011, 48(1): 22-27.
       HUANG XIAO-JI, FU MING-FU, XU BING, et al. Influence of lining elastic modulus on the dynamic responses of a circular tunnel[J]. Modern Tunnelling Technology, 2011, 48(1): 22-27.
      [7]高盟, 高广运, 王滢, 等. 饱和土与衬砌动力相互作用的圆柱形孔洞内源问题解答[J]. 固体力学学报, 2009, 30(2): 481-488.
       GAO MENG, GAO GUANG-YUN, WANG YING, et al. A solution on the internal source problem of a cylindrical cavity considering the dynamic interaction between lining and saturated soil[J]. Chinese Journal of solid Mechanics, 2009, 30(2): 481-488.
      [8]HASHEMINEJAD S M, KAZEMIRAD S. Dynamic response of an eccentrically lined circular tunnel in poroelastic soil under seismic excitation[J]. Soil Dynamic and Earthquake Engineering, 2008, 28: 277-292.
      [9]XIE K H, LIU G B, SHI Z Y. Dynamic response of a circular in viscoelastic saturated soil[J]. Soil Dynamic & Earthquake Engineering, 2004, 24(12): 1003-1011.
      [10]XU C J, WU S M. Spherical wave propagation in saturated soils[J]. Applied Mathematics and Mechanics, 1998, 20(3): 195-300.
      [11]LIU G B, XIE K H, LIU X H. Dynamic response of a partially sealed tunnel in porous rock under inner water pressure[J]. Tunnelling and Underground Space Technology, 2010, 25(4): 407-414.
      [12]LI X, CHEN Y. Transient dynamic response analysis of orthotropic circular cylindrical shell under external hydrostatic pressure[J]. Journal of Sound and Vibration, 2002, 257(5): 967-976.
      [13]XIE K H, LIU G B. SHI Z. Dynamic response of partially sealed circular tunnel in viscoelastic saturated soil[J]. Soil Dynamics and Earthquake Engineering, 2004, 24(12): 1003-1011.
      [14]刘干斌, 谢康和, 施祖元. 黏弹性饱和多孔介质中圆柱孔洞的频域响应[J]. 力学学报, 2004, 36(5): 557-563.
       LIU GAN-BIN, XIE KANG-HE, SHI ZU-YUAN. Frequency response of a cylinder cavity in poroelastic saturated medium[J]. Acta Mechanica Sinica, 2004, 36(5): 557-563.
      [15]张黎明, 王在泉, 尹莹, 等. 衬砌压力隧洞的弹塑性分析[J]. 重庆建筑大学学报, 2006, 28(2): 59-61.
       ZHANG LI-MING, WANG ZAI-QUAN, YIN YING, et al. Elasto-plastic analysis of pressure circular tuunel with liner[J]. Journal of Chongqing Jianzhu University, 2006, 28(2): 59-61.
      [16]汤雷, 傅翔. 水工隧洞施工缺陷对衬砌承载性能的影响[J]. 土木建筑与环境工程, 2009, 31(2): 74-79.
       TANG LEI, FU XIANG. Influence of construction defect on the performance of lining in hydraulic tunnels[J]. Journal of Civil, Architectural & Environmental Engineering, 2009, 31(2): 74-79.
      [17]吕玺琳, 王浩然. 软土盾构隧道开挖面支护压力极限上限解[J]. 土木建筑与环境工程, 2011, 33(2): 65-69.
       LU XI-LIN, WANG HAO-RAN. Upper bound solution of the limit support pressure during shield tunneling in soft clay[J]. Journal of Civil, Architectural & Environmental Engineering, 2011, 33(2): 65-69.
      [18]BAGLEY R L, TORVIK P J. A theoretical basis for the application of fractional calculus to viscoelasticity[J]. Journal of Rheology, 1983, 27(3): 201-210.
      [19]刘林超, 杨骁. 基于分数导数模型的粘弹性桩振动分析[J]. 应用基础与工程科学学报,2009,17(2):303-308.
       LIU LIN-CHAO, YANG XIAO. Dynamic analysis of viscoelastic piles based on fractional derivative model[J]. Journal of Basic Science and Engneering, 2009,17(2):303-308.
      [20]朱鸿鹄, 刘林超, 叶肖伟. 分数导数型粘弹性地基上矩形板的受荷响应[J]. 应用基础与工程科学学报, 2011, 19(2): 271-278.
       ZHU HONG-HU, LIU LIN-CHAO, YE XIAO-WEI. Response of a loaded rectangular plate on fractional derivative viscoelastic foundation[J]. Journal of Basic Science and Engneering, 2011, 19(2): 271-278.
      [21]BIOT M A. Propagation of elastic waves in a cylindrical bore containing a fluid[J]. Applied Physics, 1962, 33: 1482-1498.
      [22]SENJUNTICHAI T, RAJAPAKSE R K N D. Tranisent response of a circular cavity in a poroelastic medium[J]. International Journal for Numerical and Analytical Method in Geotechnics, 1993, 17:357-383.
      (编辑 王秀玲)

    相关热词搜索: 粘弹性 饱和 隧道 封闭

    • 文学百科
    • 故事大全
    • 优美句子
    • 范文
    • 美文
    • 散文
    • 小说文章